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We propose a statistical space-time model for the prediction of
atmospheric wind speed based on deterministic numerical weather
predictions and historical measurements. We consider a Gaussian
multivariate space-time framework that combines multiple sources
of past physical model outputs and measurements along with model
predictions in order to produce a probabilistic wind speed forecast
within the prediction window. We illustrate this strategy on ground
wind speed forecast for several months in 2012 for a region near the
Great Lakes in the US. The results show that (i) the prediction is
improved in the mean-squared sense relatively to the numerical fore-
casts as well as (ii) in probabilistic scores. Moreover, (iii) the samples
are shown to produce realistic wind scenarios based on the sample
spectrum.

1. Introduction . In this study we propose a statistical space-time
model for the prediction of atmospheric wind speed based on numerical
weather predictions and historical measurements. We focus on a region
around lake Michigan in the US; however, the framework proposed here
is not specific to it. The wind speed predictions are based on deterministic
numerical weather prediction (NWP) model outputs in a framework that
integrates past dependence between observational measurements and the
NWP model outputs. The aim of this work is to improve the wind speed
forecasts provided by the NWP model based on the past relation, that is
modeled linearly, between measurements and NWP forecasts.

Atmospheric surface wind prediction is very important for the energy,
agricultural, and security sectors and it has known a considerable devel-
opment for the past years. Several components of the wind field can be
predicted: the zonal and meridional components, see [16, 26]; wind speed,
see [6, 25] and wind direction, [2]. Recent works on wind speed and wind
power statistical prediction focus on the generation of predictive scenarios
that enables to account for the prediction error, see [20, 19]. However, few
criteria of quality assessment of scenarios have been proposed; multivariate

MSC 2010 subject classifications: Primary 60K35, 60K35; secondary 60K35
Keywords and phrases: sample, LATEX 2ε

1

http://www.imstat.org/aoas/
http://arxiv.org/abs/arXiv:0000.0000


2 J. BESSAC ET AL.

(multiple time-step ahead and/or space or ensemble forecasts) criteria can
be used but do not account for the nature of time trajectory of scenarios. In
[19] an event-based criterion is proposed to assess the quality of scenarios to
reproduce wind events and to compare scenarios from different models.

In general predicting wind speed based on measurements and physical
model outputs results in multivariate space-time processes that are typically
inhomogeneous due to the presence of different types of data. Multivariate
space-time modeling has been an area of intense research focus in the past
decades, see [10] for a review on bivariate geo-statistical modeling and see
[3], where hierarchical Bayesian modeling is discussed for multiple dependent
datasets.

Combining multiple sources of data is an increasing field of research due
to the large variety of sources of data available nowadays. Data fusion is also
part of multivariate modeling and various statistical models have been pro-
posed. Some of the recent studies include the following. In [11] a Bayesian
hierarchical model is built to combine model outputs and observed measure-
ments to provide spatial prediction for chemical species. A hidden process
is used to represent the unobserved ’true’ concentration of sulfur dioxide
and the sources of data are affine transformations of this ’true’ process. A
similar approach was previously used in a space-time context for multiple
measurements of snow water equivalent data in [8]. In [17], a hierarchical
model based on Spatial Random Effects model is built to combine several
outputs of regional climate model output in a spatial framework. In [4], a
space-time hierarchical Bayesian model is proposed to fuse measurements
and model outputs of air quality data with an extension of a downscaling
model introduced some years ago. A hierarchical approach to multivariate
spatial modeling and prediction is developed in [22, 23], where the speci-
fication of the conditional and a marginal distribution is made instead of
specifying the joint distribution, which involves cross-covariances. Indeed
the modeling of multivariate covariance structure is challenging and is still
an on-going research area, see [1, 12, 5].

Forecast uncertainty can be accounted through ensemble forecasts; how-
ever, this strategy is known to be often uncalibrated and under-dispersive.
In the context of improving numerical forecasts, statistical methods have
been proposed to provide probabilistic forecasts; such methods post-process
the single or ensemble forecasts and tend to address the issue of bias and
dispersion. These methods are known as model output statistics (MOS) and
ensemble model output statistics (EMOS) and are used to identify short-
comings of the raw ensemble from past measurement-forecast pairs. In [21],
a finite mixture model named Bayesian model averaging (BMA) is intro-
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duced for producing probabilistic forecasts based on ensemble forecasts. In
[13], a regression model between the measurements and the members of the
ensemble forecast is proposed as a post-processing statistical tool. The as-
sessment of multivariate predictive distribution has been discussed in [15],
where tools to assess calibration and sharpness of the predictive distributions
are investigated.

In this paper, we propose a bivariate space-time Gaussian process to im-
prove forecasts from an NWP model. The forecasts of wind speed are com-
bined with historical measurements data and provide scenarios of prediction.
A particularly important aspect of our model is to account for the space-
time dependence between the two datasets. To the best of our knowledge,
this dependence is not accounted by the MOS methods proposed in the liter-
ature for wind speed. Moreover, in this work we consider a framework where
future information from the NWP is used, whereas common MOS methods
work with contemporaneous information in space and time. The model is
specified in a hierarchical way in order to avoid the characterization of the
full space-time bivariate covariance. This specification initially proposed in
[22, 23] in a spatial context, is here extended to a space-time modeling.

The paper is organized as follow, in Section 2 we introduce the modeling
context and the model. In Section 3, we describe the two sources of data
that are used and combined. In Section 4, the model is validated on dif-
ferent months of the year and the quality of space-time prediction at one
out-of-sample station is assessed. We highlight the improvements in terms
of forecasting accuracy of the proposed model with respect to the NWP
forecasts. We conclude with presenting general improvements made by the
model with respect to the NWP data in Section 5 and highlight some per-
spectives to improve the shortcomings of the models.

2. A statistical model for NWP model outputs. In this section,
we introduce a Gaussian modeling framework that embeds the space-time
dependence between measured observations and NWP model forecasts. In
[22, 23], a model is built to conveniently combine spatial data, here we extend
this framework to a space-time context.

2.1. Modeling objectives. The modeling context is the following, let us
assume that both measured observations YObs and NWP forecasts YNWP

are available from time t1 to time tk. In the sequel, the term “observations”
refers to the observational measurements. Observations are available at J0

locations S = {s1, ..., sJ0} and NWP forecasts are available over a grid that
covers these stations. The NWP model is run every day for a period of h
hours, time can be written in terms of blocks of length h. Henceforth, we
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consider a time-window of h = 24 hours, and let us denote by bi the i-th
time block of length h, bi = {tki , ..., tki+h−1}.

The objective here is to predict the measurements YObs between time
tkK and tkK+h−1 at the stations S = {s1, ..., sJ0} and possibly at locations
{sJ0+1, ..., sJ} where no historical measurements are recorded, from NWP
forecasts that are available between tkK and tkK+h−1. This can be summa-
rized by:



yaObs(b1; s1, ..., sJ0)
yaObs(b2; s1, ..., sJ0)

...
yaObs(bK ; s1, ..., sJ0)

yuObs(tkK ; s1, ..., sJ0 , sJ0+1, ..., sJ)
...

yuObs(tkK+h−1; s1, ..., sJ0 , sJ0+1, ..., sJ)


and



yaNWP(b1; s1, ..., sJ0)
yaNWP(b2; s1, ..., sJ0)

...
yaNWP(bK ; s1, ..., sJ0)

yaNWP(tkK ; s1, ..., sJ0 , sJ0+1, ..., sJ)
...

yaNWP(tkK+h−1; s1, ..., sJ0 , sJ0+1, ..., sJ)


,

(2.1)

where the super-script “a” stands for available and “u” for unavailable quan-
tities.

In this context the model is trained on the following available pairs:(
(yaObs(b1; S), yaNWP(b1; S)), (yaObs(b2; S), yaNWP(b2; S)), ..., (yaObs(bK ; S), yaNWP(bK ; S))

)
,

and the prediction is made from yaNWP(bK+1; S, sJ0+1, ..., sJ) to estimate
yuObs(bK+1; S, sJ0+1, ..., sJ), where bK+1 = {tkK , ..., tkK+h−1}. Each day of
h = 24 hours, the WRF model is run independently from the previous day
because WRF is initialized from a reanalysis or assimilated dataset.

In a probabilistic sense, we aim to compute

p (yuObs(bK+1)|yaNWP(bK+1), yaObs(b1:K), yoNWP(b1:K)) =

(2.2)

∫
p (yuObs(bK+1), θ|yaNWP(bK+1), yaObs(b1), ..., yaObs(bK), yaNWP(b1), ..., yaNWP(bK)) dθ

(2.3)

where θ is a random set of model parameters, blocks b1:K are available and
bK+1 is a predicted block, and the spatial components are suppressed for
brevity. Note that bK+1 is not necessarily a block coming right after bK , but
rather a day that is not observed. To simplify the computation of (2.3) we
now make several assumptions. First, we assume (i) that we have approxi-
mate independence of yuObs(bK+1) on yaObs(b1:K), yaNWP(b1:K) conditional on
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yaNWP(bK+1). In hierarchical models, as ours, which has NWP predictions as
its first layer and the observation sites as the second layer, it is common to
make the assumption that random variables on the second layer are inde-
pendent conditional on the realizations of the ones in the first layer, see [9].
This is exactly correct if the additional randomness occurs from the noise
of different unrelated sensors. In our case, as we are considering the error
of NWP models, the difference between prediction and observations most
likely occurs due to features not modeled by NWP. They may be the use of
lower resolution or models that have been obtained by some level of space-
time homogenization of the physics of the model considered. In this case, the
difference is the modeling of subscale noise, which can be assumed to have
short temporal correlation scales, see [18]. Moreover, our use of 24h tempo-
ral blocks as opposed to every time index would strengthen the validity of
approximate conditional independence on NWP simulations of wind realiza-
tions at observation sites. The independence of yuObs(bK+1) on yaNWP(b1:K)
conditional on yaNWP(bK+1) may also be a good approximation given the
short temporal correlation scales of subscale noise discussed above.

As a result, assumption i implies that the integrand in (2.3) can be ap-
proximated as

p (yuObs(bK+1), θ|yaNWP(bK+1), yaObs(b1:K), yaNWP(b1:K))

= p (yuObs(bK+1)|θ, yaNWP(bK+1), yaObs(b1:K), yaNWP(b1:K)) p (θ|yaObs(b1:K), yaNWP(b1:K))

≈ p (yuObs(bK+1)|θ, yaNWP(bK+1)) p (θ|yaObs(b1:K), yaNWP(b1:K))
(2.4)

In this study, we assume that θ∗ can be obtained (ii) maximizing the likeli-
hood

θ∗ = argmaxθ L (θ; yaObs(b1:K), yaNWP(b1:K)) = argmaxθ p (θ|yaObs(b1:K), yaNWP(b1:K)) .
(2.5)

With assumptions (i-ii), and thus using (2.4) in (2.3) we obtain that

∫
p (yuObs(bK+1), θ|yaNWP(bK+1), yaObs(b1), ..., yaObs(bK), yaNWP(b1), ..., yaNWP(bK)) dθ ≈

(2.6)

p (yuObs(bK+1)|θ∗, yaNWP(bK+1))
(2.7)

In what follows we consider multivariate normal distributions for (2.7). In
our approach we have found it productive to model statistically the output
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of NWP itself. The way this can be thought of is that NWP is a noisy re-
alization of a latent underlying process NWPV (which models the evolution
of spatially averaged quantities). Then NWP conditional on this NWPV we
then assume to be independent for two different temporal blocks – all tem-
poral correlation between successive blocks is due to NWPV itself. The same
reasoning from above now applies by replacing NWPV in that discussion.
Note that we never forecast the NWP output using the statistical model we
develop, we only forecast its relationship to the observations. Thus, there
is no need to model explicitly the temporal correlation between different
blocks of NWP as long as a sample is produced by the WRF model by a
(for the purpose of this paper) black box mechanism which emulates the cor-
rect interblock correlation by its relationship to NWPV . Moreover, if such an
assumption does not hold completely, it can only lead to more conservative
forecasts. Another way our approach can be thought of is as a regression
approach with noisy NWP predictors and the observational unit being one
temporal block over the entire geographical area. As a result, the likelihood
in (2.5) factorizes in product form for different temporal blocks.

To summarize our approach, for a given statistical model, we first esti-
mate θ∗ from the available data (model and observations) using (2.5), then,
using (2.7) a predictive distribution is obtained by conditioning only on the
NWP predictions for the same temporal block and plugging-in the maximum
likelihood estimate θ∗:

p (yuObs(bK+1)|yaNWP(bK+1), yaObs(b1:K), yaNWP(b1:K)) ≈ p (yuObs(bK+1)|θ∗, yaNWP(bK+1))
(2.8)

These choices are motivated by computational tractability, by the fact that
we assume that the information missed by NWP is a subscale type informa-
tion, which, as mentioned above, is assumed to have short time correlations
conditional on NWP realizations, and by the fact that we do not forecast
NWP itself, but rather the relationship between NWP and observations. In
Section 2.2 we review a hierarchical approach for Gaussian processes and in
Section 2.3 we present the model used for the mean and covariance functions
that introduce the parametrization θ.

2.2. The hierarchical bivariate model. Gaussian processes are chosen for
their convenience in expressing conditional distributions. As done in other
studies, we use the wind speed data directly without any transformation
[14, 11, 23]. Moreover, we have not observed a significant departure from
normality within the data sets used for this study. Square-root or Box-Cox
transformations can be used to preprocess the data, but we do not expect
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that will influence the modeling choices. We write the joint distribution of
the process (YObs, YNWP) as:(

YObs

YNWP

)
∼ N

((
µObs

µNWP

)
,

(
ΣObs ΣObs,NWP

ΣT
Obs,NWP ΣNWP

))
.(2.9)

The positive-definiteness of block matrices is generally difficult to ensure
when specifying the three blocks in (2.9) independently. Therefore, in order
to avoid the specification of the full covariance in (2.9), we follow the hierar-
chical conditional modeling proposed by [22, 23] and we model (YObs|YNWP)
and (YNWP), where (YObs|YNWP) stands for the conditional distribution of
YObs given YNWP. When (YObs, YNWP) is a Gaussian process, (YObs|YNWP)
and (YNWP) follow a Gaussian distribution, then only first and second order
structures are to be specified. Consequently the model is described by the
following distributions:

(YObs|YNWP) ∼ N
(
µObs|NWP ,ΣObs|NWP

)
(2.10)

a linear dependence between YObs and YNWP agrees reasonably with the
data analysis, so we choose the following dependence:

µObs|NWP = E(YObs|YNWP) = µ+ ΛYNWP,(2.11)

and

YNWP ∼ N
(
µNWP ,ΣNWP

)
.(2.12)

Finally, from these equations, we express the full joint distribution given
by (2.9) as:

(
YObs

YNWP

)
∼ N

((
µ+ ΛµNWP

µNWP

)
,

(
ΣObs|NWP + ΛΣNWPΛT ΛΣNWP

(ΛΣNWP )T ΣNWP

))
.

(2.13)

2.3. Statistical model. In order to provide space-time prediction and also
to ensure model parsimony, we propose a parameterization in space and time
of the involved quantities such that the first and second order structures of
the conditional and the marginal distributions defined by (2.10) and (2.12)
are specified following an exploratory analysis of the datasets.
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2.3.1. Marginal mean structure of (YNWP). The empirical mean function
of YNWP exhibits spatial patterns associated to the geographical coordinates
but also to several parameters of the NWP model due to the large water
mass of the lake. (especially, the land-use, that is a categorical variable that
represents the type of land used in the parameterization of the NWP model).
Time-periodic effects are present in the first order structure of YNWP and
are accounted through harmonics of different frequencies. In Figure 7, these
spatial and temporal patterns are plotted. We write:

E(YNWP(t, s)) =

(
β0 + β1 cos

(
2πt

24

)
+ β2 sin

(
2πt

24

)
+ β3 cos

(
2πt

12

)
+

(2.14)

β4 sin

(
2πt

12

)
+ β5 cos

(
2πt

8

)
+ β6 sin

(
2πt

8

))
(
α

(LU(s))
0 + α1(s)

)
,

where t is measured in hour, LU(s) is an integer that represents the land-use
associated to station s used in the model. (αl0)l=1,...,n, with n the number of
possible land-use, (α1(j))j=1,...,J0 and (βk)k=0,...,6 are real numbers.

2.3.2. Marginal covariance structure of (YNWP). The block-structure of
the space-time covariance of the data suggests expressing wind speed at each
station as a linear transformation of an unobserved common signal with
added noise, see the top panels of Figure 4. Intuitively we can think of this
common signal as an average flow over the studied region. The wind speed
at each site is a linear transformation of this average flow. The temporal
dynamics of the unobserved signal is modeled with a squared exponential
covariance. The following structure is used:

Y(bi, sj) = LsjY0(bi) + εsj(bi),

where bi is a temporal window of h = 24 lags and sj the spatial location, Lsj

is a h×h-matrix. The various εsj are assumed independent from each other
and from Y0. This model is inspired in part by an earlier study [7], where
the L operators were used to represent a known functional relation. In our
case, Lsj is a parameterized matrix that is inferred from the data.

The overall covariance of Y has the following structure where:

cov(Y(., si),Y(., sj)) = (LsiK0LT
sj

) + δi−jKsi ,(2.15)

where δ stands for the Kronecker symbol and for j ∈ {1, ..., J0}, the h× h-
matrices Ksj are written as:

Ksj [l, k] = asj exp(−bsj(|tk − tl|)2) + δk−lcsj ,
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Fig 1: Variance of NWP outputs at every hour and each station of the sub-
region C2

and

K0[l, k] = a0 exp(−b0(|tk − tl|)2) + δk−lc0,

Following the data analysis, the h × h-matrices Lsj are parametrized as
tridiagonal matrices. Given the study of the variance in Figure 1, the diag-
onal and off-diagonal quantities are modeled with a quadratic dependence
in time and spatially dependent coefficients. The diagonal, sub-diagonal and
super-diagonal of the matrix Lsj are written as:

Lsj [i, i] = (1 + a1Lat(sj) + a2Long(sj)) + (1 + a3Lat(sj) + a4Long(sj))× i+
(1 + a5Lat(sj) + a6Long(sj))× i2 ,

Lsj [i, i− 1] = (1 + a7Lat(sj) + a8Long(sj)) + (1 + a9Lat(sj) + a10Long(sj))× i+
(1 + a11Lat(sj) + a12Long(sj))× i2,

Lsj [i, i+ 1] = (1 + a13Lat(sj) + a14Long(sj)) + (1 + a15Lat(sj) + a16Long(sj))× i+
(1 + a17Lat(sj) + a18Long(sj))× i2,

for i ∈ {1, ..., h}. We work in relatively small areas and use distances in
latitude and longitude here and for the rest of this work.

2.3.3. Conditional mean structure of (YObs|YNWP). Scatterplots of ob-
servations and model outputs suggest that a linear dependence between the
variables is reasonable. In [22], several configurations of the transition ma-
trix Λ are proposed depending on its use. For instance, a transition matrix
from atmospheric pressure to wind speed is derived from geostrophic equa-
tions in [23]. The observations exhibit daily and half-daily periodicity (with
various intensities depending on the month of the year) and spatial patterns,
see Figure 3, which are accounting in the following. However, the relation
between the two datasets does not exhibit significant time-dependence that
requires a time-varying dependence. We use spatial and temporal neighbors
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to explain the observed wind speed. The land-use (LU) is included in the
transition matrix, since it defines different behaviors in the NWP model
data. We choose the following transition between the two datasets:

E(YObs(t, s)|YNWP) = µ(t, s) + (ΛYNWP)(t, s) , with

µ(t, s) =
(
β0 + β1 cos

(2πt

24

)
+ β2 sin

(2πt

24

)
+ β3 cos

(2πt

12

)
+ β4 sin

(2πt

12

))
(

1 + β5Lat(s) + β6Long(s)
)
,

(ΛYNWP)(t, s) =

h∑
i=1

α(LU(s))(|t− ti|)
3∑

k=1

fk(∆Lat,∆Long)(s, sk)YNWP(ti, sk) , t1 ≤ t ≤ th ,

where

- α(.)(.) are temporal weights, parameterized according to α(l)(∆t) = θ
(l)
0 exp(−θ(l)

1 |∆t|)+
θ

(l)
2 , for the time-difference ∆t in {0, .., h−1} ; the integer l ∈ {1, .., n}

is the land-use value of the closest grid point of s ; α(l)(0) = 1 for
identifiability purpose,

- f· are linear functions of the differences in latitude and in longitude ∆Lat(si, sj) =
|Lat(si)− Lat(sj)| and ∆Long(si, sj) = |Long(si)− Long(sj)|,

- s1, s2, s3 nearest spatial neighbor grid points of s selected according to
the radial distance, but other distances are possible. Moreover, for
simplicity we consider here nearest neighbors, but other choices of
predictors can be made such as upwind stations for instance.

2.3.4. Conditional covariance structure of (YObs|YNWP). The analysis of
the empirical conditional covariance suggests the use of the parametric shape
proposed in (2.15), with a different set of parameters.

2.4. Estimation of the parameters. Maximum likelihood is chosen to es-
timate the parameters. The likelihood of the model for the observed dataset
yObs(t1, ..., tT ; s1, ..., sJ0), yNWP(t1, ..., tT ; s1, ..., sJ0) is written as:

L(θ; yObs(t1, ..., tT ; s1, ..., sJ0), yNWP(t1, ..., tT ; s1, ..., sJ0))

= pθ(yObs(t1, ..., tT ; s1, ..., sJ0), yNWP(t1, ..., tT ; s1, ..., sJ0))

= pθ(yNWP(t1, ..., tT ; s1, ..., sJ0))pθ(yObs(t1, ..., tT ; s1, ..., sJ0)|yNWP(t1, ..., tT ; s1, ..., sJ0)).

This is the particular instantiation of (2.5).
Each day, the WRF model is run independently from the previous day so

we consider statistical independence between each day, which leads to the
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following product:

pθ(yNWP(t1, ..., tT ; s1, ..., sJ0)) =
K∏
i=1

pθ(yNWP(tki ; S), ..., yNWP(tki+23; S))

=
K∏
i=1

pθ(yNWP(bi; S))

where S = {s1, ..., sJ0} and {b1, ..., bK} = {t1, ..., t24, t25, ..., tT } with bi =
{tki , ..., tki+23}. For each i ∈ {1, ...,K}:

pθ(yNWP(bi; S)) =

1√
(2π)J0 det(ΣNWP )

exp
(
− 1

2
(yNWP(bi; S)− µNWP )TΣ−1

NWP (yNWP(bi; S)− µNWP )
)
,

where µNWP and ΣNWP are the parametric mean and covariance expressed
in (2.14) and (2.15). The log-likelihood associated to the marginal of YNWP

is then expressed as:

log(pθ(yNWP(t1, ..., tT ; s1, ..., sJ0)))

= −1

2

K∑
i=1

(
log((2π)J0) + log(det(ΣNWP )) + (yNWP(bi; S)− µNWP )TΣ−1

NWP (yNWP(bi; S)− µNWP )
)
.

Similarly the conditional distribution is written as:

log(pθ(yObs(t1, ..., tT ; s1, ..., sJ0)|yNWP(t1, ..., tT ; s1, ..., sJ0)))

= −1

2

K∑
i=1

(
log((2π)J0) + log(det(ΣObs|NWP ))

+ (yObs(bi; S)− µ− ΛyNWP(bi; S))TΣ−1
Obs|NWP (yObs(bi; S)− µ− ΛyNWP(bi; S))

)
.

In practice, a preliminary least square estimation of the parameters is real-
ized between the empirical and parametric first and second order structures
of YObs and YNWP. These estimates are used as initial conditions of the
maximum likelihood procedure.

2.5. Kriging. Space-time predictions of YObs from YNWP are obtained
from the kriging equations, see [28], with the mean and covariance defined
by (2.13). For t0 in {tk+1, ..., tk+h} and s0 in {1, ..., J0, J0 + 1, ..., J} defined
in (2.1),

(YObs(t0; s0)|YNWP(tk+1, ..., tk+h; 1, ..., J0, J0 + 1, ..., J)) ∼ N
(
µ̂Obs(t0; s0), Σ̂Obs(t0; s0)

)(2.16)
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with

µ̂Obs(t0; s0) = (µ+ ΛµNWP )(t0; s0)+

(2.17a)

cT0 Σ−1
NWP ((bK ; 1, ..., J); (bK ; 1, ..., J))((YNWP − µNWP )(bK ; 1, ..., J)) ,

Σ̂Obs(t0; s0) = ΣObs((t0; s0); (t0; s0)) + cT0 Σ−1
NWP ((bK ; 1, ..., J); (bK ; 1, ..., J))c0 ,

(2.17b)

c0 = ΣObs,NWP ((t0; s0); (bK ; 1, ..., J)).

The distribution (2.16) is used to generate the scenarios of prediction of
wind speed in Section 4. This is in fact the predictive distribution presented
in (2.8).

3. Wind data. In order to improve forecasts from the considered nu-
merical model, two sources of data are combined, one source consists of
ground measurements and the other is the Weather Research and Forecast
(WRF) model outputs. The measurement data are recorded across an irreg-
ular network and at each observational station, we pick the closest gridded
point of NWP outputs. This results in the two datasets having the same
number of spatial locations; however, the proposed model is not restricted
to this spatial layout and can handle for datasets with different numbers
of stations. In the following, the time series of the two datasets are filtered
in time by a moving average process over a window of one hour to remove
small scale effects and focus on a larger temporal scale and they are picked
every hour.

3.1. Direct observations. Observational data are extracted from the Au-
tomated Surface Observing System (ASOS) network, they are available at
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin. The network of col-
lecting stations covers the US territory. The studied data are 1-minute data
selected over the states of Wisconsin, Illinois, Indiana and Michigan, see
Fig. 2. The measured wind speed is discretized in integer knots (on knot is
about 0.5 m/s). We do not apply any additional treatment to account for
this discretization since the data are filtered over a window of 1 hour, see
[25] for discussion about the discretization of wind speed. The orography of
this region is simple and flat; however, the presence of Lake Michigan has
strong impacts on wind conditions. Several months are investigated and re-
veal different behaviors, especially periodicities differ from winter to spring
and summer months. In the sequel for homogeneity purpose the dataset
is sub-divided in 3 spatial clusters depicted in Fig. 2. A spatial clustering

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin
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Fig 2: Map of the considered area. Clusters are respectively denoted as C1

for points represented by •, stations of C2 are represented by N and C3 by
�. The station represented by ⊕ is Argonne National Laboratory, IL, this
station will be used for validation in the following.

is performed on wind speed in order to distinguish among different aver-
age regional weather conditions. This is a proxy for different NWP forecast
behaviors. These three clusters are treated independently hereafter.

3.2. Numerical weather prediction data. State-of-the-art NWP forecasts
are generated by using WRF v3.6 ([24]) which is a state-of-the-art numeri-
cal weather prediction system designed to serve both operational forecasting
and atmospheric research needs. WRF has a comprehensive description of
the atmospheric physics that includes cloud parameterization, land-surface
models, atmosphere-ocean coupling, and broad radiation models. The ter-
rain resolution can go up to 30 seconds of a degree (less than 1 km2). The
NWP forecasts are initialized using North American Regional Reanalysis
fields. The NWP forecasts are initialized using North American Regional
Reanalysis fields data set that covers the North American continent (160W-
20W; 10N-80N) with a resolution of 10 minutes of a degree, 29 pressure
levels (1000-100 hPa, excluding the surface), every three hours from 1979
until present. Simulations are started every day during January, May and
August 2012 and cover the continental U.S. on a grid of 25x25 Km with a
time resolution of 10 minutes.
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Fig 3: Empirical and fitted parametric mean of wind speed at each hour of
a day and at each station in the sub-region C2 in January. Vertical lines
separate each station, within each of these windows, each hour of the day is
considered. Top panel: mean of YNWP, bottom panel: mean of YObs.

4. Results. In this section, in a first time we make some analysis of
the estimated parameters and in a second time we explore qualitatively and
quantitatively the capacity of the model to provide accurate forecasts. Three
different months of the year (January, May and August) are considered and
are studied independently in order to investigate the model performance
under different conditions. For each month, the model is trained on two
thirds of the month and validated on the remaining third. The two training
thirds are rolled over all the possible permutations.

4.1. Analysis of the estimated parameters. In this section, we investigate
the maximum likelihood estimation of the mean and covariance of the pro-
cess. In a first step, the empirical mean and covariance are compared to
the fitted parametric ones proposed in Section 2. The mean of the process
(YObs, YNWP) is depicted on Figure 3; for each station, the mean at each
hour of the day is plotted. The structure of the estimated mean of the two
processes is accurately reproduced in terms of temporal and spatial patterns.
In Figure 4, the empirical and fitted space-time correlation are plotted. A
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great part of the structure is captured by the proposed parametric shapes;
however the global shapes tend to be smoothed by the parametric models.
The non-separability between space and time that is visible on the empirical
off-diagonal blocks is not entirely captured by the parametric model on the
top panels. The analysis of the matrices Ls, that are involved in the covari-
ance model (2.15), reveals different configurations given the sub-region and
the period of the year, which can be expected since these operators can be
interpreted as a linear projector of a process that is common to all the sta-
tions. Average air flows are different according the season and the location,
the dependence from a common process that would contain this information
is likely to differ in space and in time across the year.

The matrix Λ, which appears in both mean and covariance components,
is of importance since it links the NWP forecasts to the objective predictive
quantities. The analysis of Λ reveals that the intensity of temporal depen-
dence varies with the land-use; however, the temporal persistence is curtailed
to a few hours across the different land-uses.

In a second time, the uncertainty associated to the estimation of the
parameters is accounted for. Following [27], samples from a normal distribu-
tion, with the mean given by the maximum likelihood estimated parameters
and the covariance given by the inverse of the hessian of the log-likelihood,
are generated. In Figure 5, the maximum likelihood estimation of the param-
eters and the associated samples are plotted. The parameters that present
the most estimation variance are several parameters ai that appear in the
matrices L in Sub-Section 2.3.2. In the parameters of µObs|NWP , parame-
ters with a high estimation variance are the ones associated to µ defined
in Sub-Section 2.3.3. In these cases, a lack of data in the estimation of
these specific parameters may cause this high estimation variance. Notice
that the improvement in the predictive variance is inferior to 5% when the
uncertainty is accounted in the generation of the predictive scenarios in com-
parison with the predictive variance when the uncertainty on the parameters
is not accounted.

4.2. Assessment of the quality of the predictive model. In this part, sam-
ples are generated from the predictive distribution defined by Equation
(2.16) and are called scenarios or samples in the following. The mean of
these samples can be used as a point-wise prediction but the objective here
is to embed the uncertainty associated with the prediction by working with
samples from the predictive distribution.

4.2.1. Qualitative exploration of the predictions. In a first step, as a vi-
sual assessment of the prediction, we investigate observed time series and
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generated predictive scenarios for a part of the months of January and Au-
gust, see Figure 6. Measured wind speed, that is to be predicted, is plotted
as a reference to evaluate the accuracy of the prediction. NWP wind fore-
casts are also plotted as they are predictors and as a target to be improved
with respect to the measurements. For both months under display, the global
trend of the measured time series is well captured by the predictive mean
and by the scenarios. The predictive samples cover the measurements that
are to be predicted (see left panels) and the predictive mean realizes, most
of the time, an improvement with respect to the NWP forecasts. Moreover,
each sample has a temporal dynamics consistent with the observed temporal
behavior (see right panels). The improvement of the proposed prediction is
more visible in August (bottom panels), this is likely due to the periodic
components that are stronger in this period of the year and that are well
captured by the model, see also Figure 3 described below. Furthermore, the
spread of the scenarios is more important in January than in August, this is
likely due to the fact that wind speed has more variability in winter as illus-
trated in the observed variances in Table 1, which makes it less predictable.
We note that the scenarios are not spreading at the end of each prediction
window as observed in the literature, this is due to the fact that the NWP
predictors are available over the entire prediction window and such spread
increase is not obvious in the model–measurement discrepancy.

In Figure 7, mean wind speed at each hour of the day is depicted for the
measurements, NWP forecasts and forecasts from the model at a station that
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Fig 6: Time series of wind speed at the station with the median RMSE.
January 2012 (top) - August 2012 (bottom) for six days. Left panels: 50
predictive samples are plotted, right panel: 3 samples are plotted.

has the median RMSE in sub-region C2. The temporal evolution of the mean
differs from the measurements to the NWP data; however, the proposed
model is able to compensate for this discrepancy well, which is also visible
in time series of Figure 6. In Figure 8 we show the mean wind speed at each
station in August. The mean is estimated for the measurements, the NWP
forecasts and the predictions from our model. The NWP forecasts show a
higher mean than the measurements, especially around the lake, likely due
to the parameterization of the NWP model. The proposed predictive model
is able to correct this over-estimation and provide a mean consistent with the
measured one. Moreover, we note that the spatial structure of measurement
is well captured by our forecasts.

The variance of the processes is shown on Fig 9, the proposed model also
corrects in space and time the variances that are not well captured by the
NWP model. Stations identified as 7 and 9 are near the lake and the variance
present in the NWP forecast is consistent with the mean overprediction. In
general, the space-time correlation of the NWP forecasts and the model
predictions are relatively consistent with the space-time correlation of mea-
surements, which is reflected in part in the performance metrics considered
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Fig 7: Mean wind speed at each hour of the day in January (left) and August
(right), the quantities are plotted for the station with the median RMSE in
sub-region C2.
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below.
The spectral content of the scenarios and of the observations is estimated

and depicted in Fig. 10, the average spectrum of the estimated spectrum
on each sample is also plotted. The estimated spectra of the scenarios cover
most of the spectrum of the observations. The overall shape of the estimated
spectrum and of the average spectrum indicate a robust agreement, espe-
cially in August where small frequencies are accurately captured. In this and
other spectral estimates, the spectral content at high frequency is sometimes
slightly overpredicted; we believe this is due to the fact that the forecasts do
not attempt to correct for discontinuities at the boundaries between tempo-
ral blocks. Nevertheless, the features of the spectrum of the measurements
appear well captured by our model. Therefore, our model appears to be
quite appropriate as a realistic wind scenario generator.

4.2.2. Quantitative assessment of the quality of the predictions. In a sec-
ond step, we study general metrics to assess quantitatively the overall im-
provement of the model in comparison with the WRF model outputs, see
Table 1. In this paper, we study general metrics since there are no specific
user-application here; however we expect similar performances when using
specific metrics. The root mean square error (RMSE) is computed for the
predictive mean of the proposed distribution and for the NWP forecasts. We
consider also the energy score (ES) which represents a multivariate gener-
alization of the continuous ranked probability score (CRPS) (see [15, 19]).
This metric is an omnibus metric that enables to compare ensemble fore-
casts and scenarios with point-wise prediction; it is computed on predictive
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Fig 10: Estimated spectrum in January (left) and August (right) for the
station with the median RMSE in sub-region C2.

samples and on NWP forecasts. The energy score is a proper scoring rule,
the lower is the energy score the better is the proposed forecast.

On the sub-region C2, the model shows the greatest improvement in terms
of RMSE and energy score, this is likely due to the presence of Lake Michi-
gan. Indeed, the NWP embeds this presence through the lake mask and
land-use but this may be overestimated in comparison with the behaviors of
the observations. The improvement of RMSE is more significant in May and
August, this is likely due to the periodic components that are well captured
by the model as said earlier. The energy score clearly favors the proposed
model in comparison to the WRF outputs. The mean of the observations is
well captured by the prediction made with the model, the variance is some-
times over-estimated depending the sub-region and the period of the year,
but most of the variances are well reproduced.

4.3. Validation at Argonne station. We use an independent wind speed
dataset collected at Argonne National Laboratory in order to further validate
the model. The wind speed at Argonne is predicted by the model fitted on
the cluster C2, without using this information in the model training. These
data are obtained from the weather tower, and are available at the URL
http://www.atmos.anl.gov/ANLMET/. These data are quality controlled,
available every 15 minutes, and each measure is the average of the last 15
minutes-interval data. Predictive scenarios are generated from the space-
time prediction distribution (2.16). The RMSE and energy score is available
in Table 1. The quality of prediction is very sensitive to the land-use of the
NWP predictor, and a spurious land-use may lead to a poor quality forecast

http://www.atmos.anl.gov/ANLMET/
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Model RMSE Energy score Mean of YObs Variance of YObs

NWP (Jan. 2012, C1) 1.85 48 Measurements 4.6 5.31

Model (Jan. 2012, C1) 1.65 (10.9%) 30 Samples 4.58 5.48

NWP (May 2012, C1) 2.97 77 Measurements 2.87 2.78

Model (May 2012, C1) 1.9 (36%) 35 Samples 3.14 5.8

NWP (Aug. 2012, C1) 1.73 44 Measurements 2.49 2

Model (Aug. 2012, C1) 1.13 (34.9%) 21 Samples 2.55 2.39

NWP (Jan. 2012, C2) 2.55 66 Measurements 4.32 5.05

Model (Jan. 2012, C2) 1.81 (29%) 33 Samples 4.55 6.37

NWP (May 2012, C2) 3.29 85 Measurements 3.56 4.47

Model (May 2012, C2) 1.86 (43.4%) 35 Samples 3.71 3.83

NWP (Aug. 2012, C2) 1.9 48 Measurements 2.29 2.48

Model (Aug. 2012, C2) 1.31 (40.4%) 21 Samples 2.39 2.68

NWP (Jan. 2012, C3) 2.05 53 Measurements 4.29 5.04

Model (Jan. 2012, C3) 1.82 (20%) 35 Samples 4.32 9.48

NWP (May 2012, C3) 2.34 61 Measurements 3.48 3.36

Model (May 2012, C3) 1.85 (21%) 34 Samples 3.39 6.44

NWP (Aug. 2012, C3) 1.72 44 Measurements 2.3 2.22

Model (Aug. 2012, C3) 1.22 (28.9%) 22 Samples 2.31 2.15

NWP (Jan. 2012, ANL) 2.33 60 Measurements 3.5 3.88

Model (Jan. 2012, ANL) 1.59 (31.6%) 31 Samples 3.63 7.17

NWP (May 2012, ANL) 3 78 Measurements 2.87 3.03

Model (May 2012, ANL) 2.06 (31.3%) 38 Samples 3.62 5.47

NWP (Aug. 2012, ANL) 2.02 51 Measurements 2.04 1.09

Model (Aug. 2012, ANL) 1.08 (46.7%) 19 Samples 2.24 2.5
Table 1

Statistics and metrics are given for the station that represents the median RMSE in each
cluster denoted as Ci, for i = 1, 2, 3. They are evaluated on the concerned month for time
prediction. Associated to the model RMSE is the percentage of improvement of the model
with respect to the NWP data. ANL refers to the station at Argonne National Laboratory

that is predicted in space and time from the model trained on the cluster C2.
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Fig 11: Time series at Argonne in January 2012 and estimated spectrum.

from the model. In Fig. 11, predictive scenarios and measured wind speed
at Argonne are plotted, the quality of prediction is good but not as accurate
as when only time prediction is made as in Sub-section 4.3. Moreover, wind
speed from Argonne is not extracted from the ASOS dataset, which may also
lead to some discrepancy in the forecast, due to different recording process.

5. Conclusions. We have introduced a statistical space-time model-
ing framework for the prediction of atmospheric wind speed based on de-
terministic numerical weather predictions and historical measurements. We
have used a Gaussian multivariate space-time process that combines multiple
sources of past physical model outputs and measurements along with model
predictions to forecast wind speed at observations sites and at a validation
(independent site). We applied this strategy on ground wind speed forecast
for a region near the Great Lakes in the US. The results show that the
prediction is improved in the mean-squared sense as well as in probabilistic
scores. Moreover, the samples are shown to produce realistic wind scenar-
ios based on the sample spectrum. The proposed model enables to correct
the first and second order space-time structure of the numerical forecasts to
match the structure of the measurements.
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